Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Diabetes & Metabolism Journal ; : 337-348, 2022.
Article in English | WPRIM | ID: wpr-924910

ABSTRACT

Background@#We investigated the antidiabetic effects of DA-1241, a novel G protein-coupled receptor (GPR) 119 agonist, in vitro and in vivo. @*Methods@#DA-1241 was administrated to high-fat diet (HFD)-fed C57BL/6J mice for 12 weeks after hyperglycaemia developed. Oral/intraperitoneal glucose tolerance test and insulin tolerance test were performed. Serum insulin and glucagon-like peptide-1 (GLP-1) levels were measured during oral glucose tolerance test. Insulinoma cell line (INS-1E) cells and mouse islets were used to find whether DA-1241 directly stimulate insulin secretion in beta cell. HepG2 cells were used to evaluate the gluconeogenesis and autophagic process. Autophagic flux was evaluated by transfecting microtubule-associated protein 1 light chain 3-fused to green fluorescent protein and monomeric red fluorescent (mRFP-GFP-LC3) expression vector to HepG2 cells. @*Results@#Although DA-1241 treatment did not affect body weight gain and amount of food intake, fasting blood glucose level decreased along with increase in GLP-1 level. DA-1241 improved only oral glucose tolerance test and showed no effect in intraperitoneal glucose tolerance test. No significant effect was observed in insulin tolerance test. DA-1241 did not increase insulin secretion in INS-1E cell and mouse islets. DA-1241 reduced triglyceride content in the liver thereby improved fatty liver. Additionally, DA-1241 reduced gluconeogenic enzyme expression in HepG2 cells and mouse liver. DA-1241 reduced autophagic flow in HepG2 cells. @*Conclusion@#These findings suggested that DA-1241 augmented glucose-dependent insulin release via stimulation of GLP-1 secretion, and reduced hepatic gluconeogenesis, which might be associated with autophagic blockage, leading to improved glycaemic control.

2.
Journal of Korean Biological Nursing Science ; : 305-317, 2016.
Article in Korean | WPRIM | ID: wpr-169672

ABSTRACT

PURPOSE: Recent studies demonstrated disruption of the circadian clock gene is associated with the development of obesity and metabolic syndrome. Obesity is often caused by the high calorie intake, In addition, the chronic stress tends to contribute to the increased risk for obesity. To evaluate the molecular mechanisms, we examined the expression of circadian clock genes in high fat diet-induced mice models with the chronic stress. METHODS: C57BL/6J mice were fed with a 45% or 60% high fat diet for 8 weeks. Daily immobilization stress was applied to mice fed with a 45% high fat for 16 weeks. We compared body weight, food consumption, hormone levels and metabolic variables in blood. mRNA expression levels of metabolic and circadian clock genes in both fat and liver were determined by quantitative RT-PCR. RESULTS: The higher fat content induced more severe hyperglycemia, hyperlipidemia and hyperinsulinemia, and these results correlated with their relevant gene expressions in fat and liver tissues. Chronic stress had only minimal effects on metabolic variables, but it altered the expression patterns of metabolic and circadian clock genes. These results suggest that the fat metabolism regulates the function of the circadian clock genes in peripheral tissues, and stress hormones may contribute to its regulation.


Subject(s)
Animals , Mice , Body Weight , Circadian Clocks , Diet, High-Fat , Gene Expression , Hyperglycemia , Hyperinsulinism , Hyperlipidemias , Immobilization , Liver , Metabolism , Obesity , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL